Coursera - Mining Massive Datasets (Stanford University) . - Printable Version +- Krafty Internet Marketing Forum (https://kraftymarketingprofits.com/internetmarketingforum) +-- Forum: Internet Marketing Tips, Tricks, Courses & Bots! (https://kraftymarketingprofits.com/internetmarketingforum/Forum-internet-marketing-tips-tricks-courses-bots--50) +--- Forum: Internet Marketing Special Downloads! (https://kraftymarketingprofits.com/internetmarketingforum/Forum-internet-marketing-special-downloads--53) +--- Thread: Coursera - Mining Massive Datasets (Stanford University) . (/Thread-coursera-mining-massive-datasets-stanford-university--21228) |
Coursera - Mining Massive Datasets (Stanford University) . - aretr - 05-31-2019 Coursera - Mining Massive Datasets (Stanford University) WEBRip | English | MP4 + PDF Guides | 960 x 540 | AVC ~77 kbps | 29.970 fps AAC | 128 Kbps | 44.1 KHz | 2 channels | Subs: English (.srt) | 20:04:35 | 2.39 GB Genre: eLearning Video / Data Science and Big Data We introduce the participant to modern distributed file systems and MapReduce, including what distinguishes good MapReduce algorithms from good algorithms in general. The rest of the course is devoted to algorithms for extracting models and information from large datasets. Participants will learn how Google's PageRank algorithm models importance of Web pages and some of the many extensions that have been used for a variety of purposes. We'll cover locality-sensitive hashing, a bit of magic that allows you to find similar items in a set of items so large you cannot possibly compare each pair. When data is stored as a very large, sparse matrix, dimensionality reduction is often a good way to model the data, but standard approaches do not scale well; we'll talk about efficient approaches. Many other large-scale algorithms are covered as well, as outlined in the course syllabus. Syllabus Week 1: MapReduce Link Analysis - PageRank Week 2: Locality-Sensitive Hashing - Basics + Applications Distance Measures Nearest Neighbors Frequent Itemsets Week 3: Data Stream Mining Analysis of Large Graphs Week 4: Recommender Systems Dimensionality Reduction Week 5: Clustering Computational Advertising Week 6: Support-Vector Machines Decision Trees MapReduce Algorithms Week 7: More About Link Analysis - Topic-specific PageRank, Link Spam. More About Locality-Sensitive Hashing General Complete name : 06_Dimensionality_Reduction-_Introduction_12-01.mp4 Format : MPEG-4 Format profile : Base Media Codec ID : isom (isom/iso2/avc1/mp41) File size : 18.4 MiB Duration : 12 min 1 s Overall bit rate : 214 kb/s Writing application : Lavf55.19.104 Video ID : 1 Format : AVC Format/Info : Advanced Video Codec Format profile : [email protected] Format settings : CABAC / 4 Ref Frames Format settings, CABAC : Yes Format settings, RefFrames : 4 frames Codec ID : avc1 Codec ID/Info : Advanced Video Coding Duration : 12 min 1 s Bit rate : 77.0 kb/s Width : 960 pixels Height : 540 pixels Display aspect ratio : 16:9 Frame rate mode : Constant Frame rate : 29.970 (29970/1000) FPS Color space : YUV Chroma subsampling : 4:2:0 Bit depth : 8 bits Scan type : Progressive Bits/(Pixel*Frame) : 0.005 Stream size : 6.62 MiB (36%) Writing library : x264 core 138 Encoding settings : cabac=1 / ref=3 / deblock=1:0:0 / analyse=0x1:0x111 / me=hex / subme=7 / psy=1 / psy_rd=1.00:0.00 / mixed_ref=1 / me_range=16 / chroma_me=1 / trellis=1 / 8x8dct=0 / cqm=0 / deadzone=21,11 / fast_pskip=1 / chroma_qp_offset=-2 / threads=12 / lookahead_threads=2 / sliced_threads=0 / nr=0 / decimate=1 / interlaced=0 / bluray_compat=0 / constrained_intra=0 / bframes=3 / b_pyramid=2 / b_adapt=1 / b_bias=0 / direct=1 / weightb=1 / open_gop=0 / weightp=2 / keyint=250 / keyint_min=25 / scenecut=40 / intra_refresh=0 / rc_lookahead=40 / rc=crf / mbtree=1 / crf=28.0 / qcomp=0.60 / qpmin=0 / qpmax=69 / qpstep=4 / ip_ratio=1.40 / aq=1:1.00 Language : English Audio ID : 2 Format : AAC Format/Info : Advanced Audio Codec Format profile : LC Codec ID : mp4a-40-2 Duration : 12 min 1 s Bit rate mode : Constant Bit rate : 128 kb/s Channel(s) : 2 channels Channel positions : Front: L R Sampling rate : 44.1 kHz Frame rate : 43.066 FPS (1024 SPF) Compression mode : Lossy Stream size : 11.0 MiB (60%) Language : English Default : Yes Alternate group : 1 Screenshots DOWNLOAD Code: http://nitroflare.com/view/263973C85B9AFBD/gvn62.Coursera..Mining.Massive.Datasets.Stanford.University...part01.rar Code: https://rapidgator.net/file/2ab3469c63a985c3048374772e4af53b/gvn62.Coursera..Mining.Massive.Datasets.Stanford.University...part01.rar Code: http://turbobit.net/e8u8xglogjzq/gvn62.Coursera..Mining.Massive.Datasets.Stanford.University...part01.rar.html |